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Analytical methods for calculation of interatomic potentials
through the data on the short-range order in alloys
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of Ukraine, 252680 Kiev-142, Ukraine
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Abstract. Within the framework of the high-accuracy ring approximation elaborated by the
authors (Chepulskii R V and Bugaev V N 1998a, bJ. Phys.: Condens. Matter10 7309–26,
7327–48) in the context of the modified thermodynamic perturbation theory as applied to the
lattice gas model, two methods are developed for calculation of the atomic interaction parameters
in binary disordered alloys with Bravais crystal lattices through the data on the atomic short-
range order (SRO)—the iteration method resulting in explicit analytical relationships and the
variational method. Within both methods, the Fourier components of SRO parameters are used as
initial data, thus, the most complete information on SRO in the alloy is taken into account. Both
the iteration and variational methods permit us to calculate the atomic interaction parameters for
an arbitrary number of the coordination shells as well as the Fourier components of the atomic
interaction potentials. It is demonstrated that both methods have wide temperature–concentration
intervals of applicability. The methods can be used under investigation not only of alloys, but
also of other lattice systems (including low-dimensional ones, semiconductors and magnetics).

1. Introduction

The statistical-thermodynamic description of actual alloys requires the knowledge of
adequate numerical information on the parameters of atomic interactions. One of the
main methods for obtaining such information is based on the analysis of the atomic short-
range order (SRO) data derived through the experiments on the diffuse scattering. In the
framework of such an approach, the parameters of atomic interactions are calculated either
by the analytical methods [1–12] or by simulations within the inverse Monte Carlo method
[13].

In the recent works [14–17], in the framework of the ring approximation within the
modified thermodynamic perturbation theory as applied to the lattice gas model, a new
analytical method combining high accuracy and the simplicity of realization was developed
for calculation of SRO parameters in binary disordered alloys with Bravais crystal lattices.
The aim of the present paper is to resolve the inverse problem of calculation of the atomic
interaction parameters of an alloy in the framework of the ring approximation through SRO
data.

In section 2, as a first step in achievement of the present work’s purpose, the solution
of the inverse problem within the spherical model approximation (being the zero-order
approximation within the approach developed in [15] and [16]) is obtained.

† E-mail address: chep@imp.kiev.ua.
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In sections 3–5, two methods of resolving the inverse problem in the framework of
the ring approximation—the iteration and variational ones—are developed. The numerical
accuracies of both methods are examined.

In section 6, as an example, the advanced methods are applied in the case of Ni0.89Cr0.11

alloy.
In section 7, the obtained results are discussed.

2. Spherical model approximation

In the framework of the spherical model approximation, the expression for the Fourier
transformαk of the Warren–Cowley SRO parameters [18, 19]αR in a disordered binary
alloy A–B with a Bravais crystal lattice has the following form (see [14–16] and references
therein):

αk =
[

1+ c(1− c)
kBT

W̃k

]−1

(2.1)

where

W̃k = Ṽk + µ (2.2)

µ = 2(8− µA + µB) (2.3)

8 is the injection potential,Ṽk is the Fourier transform of the (pair) mixing potentialVR
[20, 21],

Ṽk =
∑
R

VR exp(−ik ·R) VR = N−1
∑
k

Ṽk exp(ik ·R)

VR1−R2 = EAA2 (R1−R2)− 2EAB2 (R1−R2)+ EBB2 (R1−R2)

8 = [EA1 (R)− EB1 (R)] +
∑
R′

[EAB2 (R−R′)− EBB2 (R−R′)]
(2.4)

Eα1 (R) is the self-energy of anα-type atom at the siteR associated with the presence of
an external (with respect to the alloy) field,Eα1α2

2 (R1 −R2) is the energy of the pairwise
interaction ofα1- and α2-type atoms occupying the sitesR1 andR2, respectively,µA
and µB are the chemical potentials of A and B components of the alloy, respectively,
c is the concentration of A component,kB is the Boltzmann constant,T is the absolute
temperature. Hereafter, the symbols

∑
R and

∑
k are used, accordingly, for the designation

of the summation over allN crystal lattice sites (with the radius-vectorsR) and over all
N points distinguished by the cyclic boundary conditions within the corresponding first
Brillouin zone.

Let us rewrite (2.1), taking account of (2.2), as follows

Ṽk + µ = kBT

c(1− c) [(αk)
−1− 1]. (2.5)

Integrating the right and left parts of the equality (2.5) over the first Brillouin zone and
using the condition [20, 21]

ṼR=0 = 0 (2.6)

we obtain

µ = µSM = kBT

c(1− c) (Q− 1) (2.7)
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where

Q = N−1
∑
q

(αq)
−1. (2.8)

Substituting (2.7) into (2.5), we have

Ṽk = Ṽ SMk = kBT

c(1− c) [(αk)
−1−Q]. (2.9)

The integration of the equality (2.9) with the factor exp(ik ·R) over the first Brillouin zone
yields

ṼR = V SMR = kBT

c(1− c)
[
N−1

∑
k

(αk)
−1 exp(ik ·R)− δR,0Q

]
(2.10)

where

δR,0 = B−1
∑
k

exp(ik ·R) =
{

1 if R = 0

0 if R 6= 0.
(2.11)

The expressions (2.7)–(2.10) permit us to calculate the quantityµ (2.3) as well as
the mixing potential and its Fourier transform through SRO data in the framework of the
spherical model approximation. Notice that the solution of the inverse problem as to the
mixing potential for ‘nonzero’ coordination shells obtained in the framework of the spherical
model approximation coincides (see (2.10)) with the corresponding solution obtained within
the Krivoglaz approximation [1, 2, 22] or, respectively, within the Krivoglaz–Clapp–Moss
one [3, 4], setting the corresponding normalizing multiplier equal to unity. However, within
the spherical model approximation, in contrast to the cases of both denoted approximations,
the general condition (2.6) is satisfied.

3. Ring approximation

With the aim of resolving the inverse problem in the framework of the ring approximation,
it is convenient to present the corresponding expression forαk [14–16] in the following
form [23]

Lk = (αk)−1+9k[Lk] (3.1)

where the functional9k on the functionLk

Lk = 1+ c(1− c)
kBT

Wk (3.2)

is determined by the expression

9k[Lk] = c1−N−1
∑
q

1

Lq

(
c2− c3

Lk−q

)
(3.3)

where

c1 = 1− 2c(1− c)
2c(1− c) c2 = 1− 3c(1− c)

c(1− c) c3 = (1− 2c)2

2c(1− c) . (3.4)

Note that, setting9k[Lk] ≡ 0 in the expression (3.1), we arrive (see (2.1) and (3.2)) at the
spherical model approximation:

LSMk = (αk)−1 (3.5)
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and, thus,9k[Lk] is the correction within the ring approximation to the spherical model
one.

Integrating the right and the left parts of the equality (3.1) over the first Brillouin zone
with the factor exp(ik ·R), we obtain

LR = LSMR + δR,0(c1− c2FR=0)+ c3(FR)
2 (3.6)

where

LR = N−1
∑
k

Lk exp(ik ·R) (3.7)

LSMR = N−1
∑
k

LSMk exp(ik ·R) = N−1
∑
k

(αk)
−1 exp(ik ·R) (3.8)

FR = N−1
∑
k

(Lk)
−1 exp(ik ·R). (3.9)

It should be noted that, from (3.6), taking account of (3.2), one can conclude that the
correction for the mixing potential within the ring approximation to the spherical model one
is always positive (or equal to zero). Really, integrating (3.2) over the first Brillouin zone
with the factor exp(ik ·R) underR 6= 0, we obtain

LR = c(1− c)
kbT

Wr (R 6= 0). (3.10)

Substituting (3.10) into (3.6), we have

VR = V SMR + kBT
2

[
1− 2c

c(1− c)FR
]2

(R 6= 0) (3.11)

from where the above statement becomes evident.
Under resolution of the inverse problem, one should consider the equality (3.1) (or (3.6))

as an equation on the unknown functionLk (or LR) at a given functionαk. If the solution
of this equation has been found, the quantitiesµ, Ṽk and ṼR can be expressed explicitly
in terms of this solution. Really, integrating the equality (3.2) over the first Brillouin zone
and taking into account (2.2) and (2.6), we obtain

µ = kBT

c(1− c) (LR=0− 1). (3.12)

Substituting (3.12) into (3.2), we arrive at the following expression

Vk = kBT

c(1− c) (Lk − LR=0) (3.13)

the integrating of which with the factor exp(ik ·R) over the first Brillouin zone yields

VR = kBT

c(1− c) (LR − δR,0LR=0). (3.14)

Thus, the inverse problem in the framework of the ring approximation is reduced to the
solving of the equations (3.1) and (3.6). Since the exact solving of these equations seems
to be impossible due to their non-linear integral character, in the following two sections we
develop two corresponding approximate methods—the iteration and variational ones.
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4. Iteration method

The simplest approximate solutions of the equation (3.1) are, first, the expression (3.5)
corresponding to the spherical model approximation and, second, the following expression
obtained as a result of the first iteration of (3.1):

LITk = (αk)−1+9k[(αk)
−1] = (αk)−1+ c1− c2αR=0+ c̃3N

−1
∑
q

αqαk−q. (4.1)

Substituting (4.1) into (3.12)–(3.14), we obtain, accordingly

µIT = µSM + kBT

c(1− c) [c1− c2αR=0+ c̃3(αR=0)
2] (4.2)

V IT
k = V SMk + kBT

2

[
1− 2c

c(1− c)
]2 [

N−1
∑
q

αqαk−q − (αR=0)
2

]
(4.3)

V IT
R = V SMR + kBT

2

[
1− 2c

c(1− c)
]2

[(αR)
2− δR,0(αR=0)

2]. (4.4)

Taking into account the condition [3–5, 15, 16, 24–26]

αR=0 = 1 (4.5)

the expressions (4.1)–(4.4) take the following form

LITk = (αk)−1+ c̃3

(
N−1

∑
q

αqαk−q − 1

)
(4.6)

µIT = µSM (4.7)

V ITk = V SMk + kBT
2

[
1− 2c

c(1− c)
]2(

N−1
∑
q

αqαk−q − 1

)
(4.8)

V ITR = V SMR + kBT
2

[
1− 2c

c(1− c)
]2

[(αR)
2− δR,0]. (4.9)

It is evident (see (4.1)) that the closer to one another the results of the spherical model
and the ring approximations, the higher the numerical accuracy of the described iteration
method. Thus, on the basis of the analysis performed in [16], one may suppose the rise
of the numerical accuracy of the iteration method, when the composition approaches the
equiatomic value, with increase of an effective radius of atomic interactions and under the
moving away from the point of phase transition, because just in these cases the results of
the ring and spherical model approximations draw close together.

To examine the numerical accuracy of the approximation of the exact solution of the
equation (3.1) by the expression (3.5) (within the spherical model approximation) as well
as by the expression (4.1) (within the iteration method), we considered four model cases
corresponding to the short-range atomic interactions:c = 0.1 and 0.25 atV1 > 0, V2 = 0
and V1 > 0, V2 = −0.5V1 (Vs is the mixing potential on thesth coordination shell of
the f.c.c. crystal lattice; in all casesVs = 0 for s > 2). In every considered case, for
a given temperature, the functionαk (and, respectively,αR) was calculated within the
ring approximation by the use of the formula (3.1), under the given corresponding mixing
potential. Using the obtained functionαk, by means of (2.10) and (4.9) in the framework of,
accordingly, the spherical model approximation and iteration method, the mixing potential
was recalculated and compared with the initial potential. In figures 1–4 for all four cases
considered, the results of such calculations are presented within the temperature interval



8776 R V Chepulskii and V N Bugaev
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0.0
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1.0 s=1

s=2

V
s/V

1  SM
 ITM
 Exact

k
B
T/V

1

Figure 1. The results of the calculations of the values of the mixing potentialVs for the first
two coordination shells (s = 1, 2) in the framework of the spherical model approximation (SM)
and iteration method (ITM) on the basis of SRO data obtained within the ring approximation
(3.1) in the casec = 0.1, V1 > 0 (Vs = 0 for s > 1) in the temperature interval [T0, 2T0] (where
kBT0/V1 = 0.35(5) is the reduced temperature of order–disorder phase transition calculated in
[16] by the direct Monte Carlo method).

0.6 0.8 1.0 1.2
-1.0

-0.5

0.0

0.5

1.0

s=2

s=1

s=3

V
s/V

1

 SM      VM
 ITM     Exact

k
B
T/V

1

Figure 2. The same as in figure 1, but fors = 1, 2, 3 in the casec = 0.1, V1 > 0, V2 = −0.5V1

(Vs = 0 for s > 2). ‘VM’ is the designation of the results of the calculations in the framework
of the variational method;kBT0/V1 = 0.615(5).

[T0, 2T0], whereT0 is the temperature of the order–disorder phase transition calculated by
the Monte Carlo method in [16]. The accuracies of approximate solutions obtained in the
framework of the spherical model approximation and iteration method can be judged by
the degree of deviation of the corresponding dependencies from the exact solutions known
beforehand accordingly to the applied procedure.

From the data presented in figures 1–4, it follows that, atc = 0.25 in both considered
cases, the spherical model approximation as well as the iteration method yield adequate
results (with the relative error less than 10%) almost within the entire considered temperature



Interatomic potentials in alloys 8777

0.4 0.6 0.8 1.0

0.0

0.5

1.0

V
s/V

1

s=2

s=1

 SM
 ITM
 Exact

k
B
T/V

1

Figure 3. The same as in figure 1 but in the casec = 0.25, V1 > 0 (Vs = 0 for s > 1);
kBT0/V1 = 0.449(1).
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Figure 4. The same as in figure 2 but in the casec = 0.25, V1 > 0, V2 = −0.5V1 (Vs = 0 for
s > 2); kBT0/V1 = 1.095(5).

interval except for an immediate vicinity ofT0. Under the concentration decrease, the
lowering of the numerical accuracies of both methods takes place. As a result, atc = 0.1
and V1 > 0, V2 = −0.5V1, the iteration method and the spherical model approximation
become inadequate in the temperature intervals [T0, 1.6T0] and [T0, 2T0], respectively. At
c = 0.1 andV1 > 0, V2 = 0 the iteration method is adequate and the spherical model
approximation is inadequate almost within the entire considered temperature intervals.

Thus, the performed analysis demonstrates that the approximation of the exact solution
of the equations (3.1) and (3.6) obtained within the spherical model approximation and
the iteration method may be rough in the case of a dilute alloy with the short-range atomic
interactions, as well as in the case of an alloy under the temperatures close to the temperature
of phase transition. Unfortunately, it was revealed that, generally, successive iterations as
in (4.1) do not lead to increase of the numerical accuracy of the approximate solution of



8778 R V Chepulskii and V N Bugaev

these equations due to the divergence of the corresponding iteration procedure. That is why
the next section is devoted to the development of the variational method for the calculation
of the corrections to a solution obtained within the iteration method.

5. Variational method

Let us present the solution of the equations (3.1) and (3.6) in the following form

Lk = LITk + δLk LR = LITR + δLR (5.1)

whereLITk is determined in (4.1),

LITR = N−1
∑
k

LITk exp(ik ·R) (5.2)

δLR = N−1
∑
k

δLITk exp(ik ·R). (5.3)

Substituting (5.1) into (3.6), we arrive at the equation in the functionδLR:

δLR = δR,0c2(αR=0− FR=0)− c̃3[(αr)
2− (FR)2] (5.4)

where, according to (3.9) and (5.1),

FR = N−1
∑
k

(LITk + δLk)−1 exp(ik ·R). (5.5)

The numerical consideration performed in section 4 demonstrates the tendency of quick
decrease of the error of the mixing potential calculations with increase of the radius of the
coordination shell within both the spherical model approximation and the iteration method.
One can also suggest the same tendency for the quantity (see (4.4))

V ITR − V SMR = kBT (1− 2c)2

2[c(1− c)]4
(εR)

2 (R 6= 0) (5.6)

due to the quick (outside the critical region) reduction of the absolute value of the correlation
function εR = c(1− c)αR with distance. Thus, it is reasonable to suppose that the solution
of the equation (5.4)—the quantityδLR—also decreases quickly in magnitude with the
growth of |R|. The invalidity of this assumption one may expect (see (5.6)) only in an
immediate vicinity of the critical temperature (owing to the corresponding abrupt increase
of the effective radius of interatomic correlations) and/or in the case of a dilute alloy.

Starting from the denoted assumption and using the definition (5.3), let us represent the
quantityδLk in the following approximate form

δLk =
∑
R

δLR exp(−ik ·R) =
∞∑
s=0

δLsZs(k) ≈
SL∑
s=0

δLsZs(k) (5.7)

wheres is the number of the coordination shell,

δLs = δLRs
(5.8)

Zs(k) =
∑
Rs

exp(−ik ·Rs) (5.9)

Rs is the radius-vector of the site belonging to thesth coordination shell,sL is the number
of the coordination shell such that the quantityδLs at s > sL is negligibly small:

δLs = 0 s > sL. (5.10)

It should be noted that in the case of ‘noncentrality’ of the coordination shell, i.e. when the
total number of the sites belonging to the shell can be divided into a number of symmetrically
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unequivalent groups (with the different values of the mixing potential for the sites from
different groups) [20, 21],unequalvalues of the numbering indexs should be appropriated
to the sites belonging to different groups.

Substituting (5.7) into (5.4), we have

δLs = δs,0c2(αs=0− F0)− c̃3[(αs)
2− (Fs)2] (5.11)

wheres = 0, 1, 2, . . . ,

αs = αRs
(5.12)

Fs = N−1
∑
k

[
LITk +

SL∑
s=0

δLsZs(k)

]−1

exp(ik ·Rs). (5.13)

The quantitiesδLs (s = 0, 1, 2, . . . , sL—see (5.10)) can be determined with any required
accuracy by means of their variation to find the minimum of the sum of the absolute values
of the differences between the left- and right-hand sides of the equation (5.11):

seq∑
s=0

|δLs − δs,0c2(αs=0− F0)+ c̃3[(αs)
2− (Fs)2]| (5.14)

taking into account (5.10) and (5.13). Under the minimization of the expression (5.14),
the quantitiesδLs (s = 0, 1, 2, . . . , sL), should be varied near the zero value to obtain
the solution close to those derived within the iteration method. The values ofsL should
be chosen step by step equal to 0, 1, 2, . . . as long as convergence of the results with the
increase ofsL (with required accuracy) is achieved. For every givensL, it is necessary also
to achieve convergence of the results with the increase of the numberseq > sL of equations
being used in the described variational method. Note that, as revealed in calculations (see
below), to achieve a desired high accuracy, it is sufficient to setseq = sL and to vary
Ls corresponding only to those coordination shells for which the differences between the
spherical model approximation and iteration method results are large.

After determination of the quantitiesδLs , the values ofµ, Vk andVR can be calculated
through the following relationships (see (3.12)–(3.14)):

µ = µIT + kBT

c(1− c)δLs=0 (5.15)

Vk = V ITk +
kBT

c(1− c)
SL∑
s=0

δLsZs(k) (5.16)

Vs = V ITs +
kBT

c(1− c) (δLs − δs,0δLs=0). (5.17)

To examine the adequacy of the determined values ofµ, Vk andVR, one should substitute
them into (3.1) and compare the resulting functionsαk andαR with the initial corresponding
functionsαk andαR that were used for determination ofµ, Vk andVR.

As an example, we applied the variational method in the model case (among those
considered in section 4) in which the low accuracy of the iteration method was demonstrated
in a wide temperature interval:c = 0.1, V1 > 0, V2 = −0.5V1 (Vs = 0 for s > 2).
As follows from figure 2, the results obtained within the variational method exhibit high
numerical accuracy for all considered temperatures. It should be noted that at the value of
the reduced temperaturekBT /V1 = 0.62 (i.e. even in the immediate vicinity of the phase
transition temperature—see figure 2) the variation of only eight parameters was required,
whereas atkBT /V1 > 0.7 the variation of three parameters turned out to be sufficient.
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Figure 5. In the case of Ni0.89Cr0.11 at T = 833 K (a) the values of the mixing potential for 17
coordination shells calculated in the framework of the inverse Monte Carlo (IMC) and iteration
(ITM) methods; (b) the values of SRO parameters obtained experimentally (EXPERIMENT)
and in the framework of the ring approximation (RING) by the use of the general formula (3.1)
at substitution of the mixing potential values calculated within the iteration method. The radius
of coordination shells is given in units of lattice parameter.

Thus, in the considered case, the above assumption about the quick convergence of
the variational method with an increase of the number of variable parameters is justified
outside an immediate vicinity of the phase transition temperature. Therefore, even in such an
‘unprofitable’ case as considered (characterized by a low numerical accuracy of the iteration
method), the variational method permits us to obtain results of high numerical accuracy in
a wide temperature interval under relatively small time consumptions.

6. Case of Ni0.89Cr 0.11

With the aim of application of the methods advanced in the previous sections in the case of
actual alloys, we took advantage of the data on SRO obtained by Schweika and Haubold
[27] on the basis of the experimental data for the f.c.c. alloy Ni0.89Cr0.11 at T = 833 K. In
tables 1 and 2, the corresponding values of the mixing potential for the first 30 coordination
shells and of its Fourier transform in the high-symmetry points within the first Brillouin zone
calculated within the spherical model and recently elaborated Tokar–Masanskii–Grishchenko
[9, 10]† approximations as well as within the iteration and variational (with six variable

† Note that the expressions derived in the framework of the Tokar–Masanskii–Grishchenko approximation for the
mixing potential (a) for the second and third coordination shells are identical to the corresponding expressions
obtained within the iteration method (see (4.9)) and (b) for the coordination shells beginning with the fourth one
are identical to the corresponding expressions obtained within the spherical model approximation (see (2.10))
[9, 10, 23].
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Figure 6. The dependencies on the wavevector along the high-symmetry directions [37] within
the first Brillouin zone of (a) the Fourier transforms of the mixing potential obtained within
the inverse Monte Carlo (IMC) and iteration (ITM) methods; (b) the Fourier transforms of
SRO parameters calculated experimentally (EXPERIMENT) and in the framework of the ring
approximation (RING) by the use of the general formula (3.1) at substitution of the mixing
potential values calculated within the iteration method. The designation ‘ITM (24 shells)’
corresponds to the accounting of the values of the mixing potential calculated in the framework
of the iteration method only for 24 coordination shells in a calculation of the Fourier transform.

parameters) methods are presented. The corresponding results of calculations performed by
Schweika and Haubold [27] and Finel [12] in the framework of the inverse Monte Carlo
and cluster variation methods, respectively, are also presented in these tables. In figure 5,
the values of the mixing potential for the first 17 coordination shells calculated within the
inverse Monte Carlo and iteration methods are given in graphical form as well as the values
of SRO parameters obtained experimentally and within the ring approximation by the use
of the general formula (3.1) at substitution of the mixing potential values calculated within
the iteration method.

In figure 6, the dependence of the Fourier transform of the mixing potential obtained
within the inverse Monte Carlo and iteration methods on the wavevector is presented along
the high-symmetry directions within the first Brillouin zone. The same dependence of the
Fourier transform of SRO parameters calculated both on the basis of the experimental data
and in the framework of the ring approximation by the use of the general formula (3.1) on
substitution of the mixing potential values obtained within the iteration method are presented
in this figure as well.

Table 1 indicates the closeness of the values of the mixing potential calculated in the
framework of the iteration and variational methods. This fact as well as the sufficiency to
vary only six parameters prove the high convergence of the variational method on increase
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Table 1. The values of the mixing potentialVR for the first 30 coordination shells calculated in
the framework of the spherical model (SM) and Tokar–Masanskii–Grishchenko (TMG) [9, 10]
approximations as well as within the iteration (ITM), variational with six variable parameters
(VM), inverse Monte Carlo (IMC) and cluster variation (ICVM) methods on the basis of the
data of Schweika and Haubold [27] on SRO in Ni0.89Cr0.11 at T = 833 K. All quantities are
given in meV;Imn are the Miller indices of the vectorR; the radii of coordination shells are
given in units of lattice parameter.

Shell lmn Radius SM ITM VM IMCa TMG ICVM b

1 110 0.707 44.77 51.59 51.44 52.2(6) 53.55 54.4(12)
2 200 1.000 −23.07 −19.76 −20.57 −21.0(8) −19.76 −20.0(8)
3 211 1.225 −3.10 −2.91 −2.91 −3.2(4) −2.91 −3.2(8)
4 220 1.414 10.21 10.51 10.47 10.2(6) 10.21 11.2(8)
5 310 1.581 0.04 0.08 0.07 0.0(4) 0.04
6 222 1.732 −0.92 −0.84 −0.85 −0.4(10) −0.92
7 321 1.871 −1.93 −1.91 −1.91 −2.0(4) −1.93
8 400 2.000 2.27 2.27 2.27 1.8(10) 2.27
9 411 2.121 −0.81 −0.80 −0.80 −0.8(6) −0.81

330 −4.70 −4.62 −4.62 −4.4(6) −4.70
10 420 2.236 −0.37 −0.36 −0.36 −0.2(6) −0.37
11 332 2.345 −1.93 −1.91 −1.91 −1.8(4) −1.93
12 422 2.450 1.19 1.20 1.20 1.0(6) 1.19
13 431 2.550 −0.76 −0.76 −0.76 −1.0(4) −0.76

510 0.39 0.39 0.39 0.2(6) 0.39
14 521 2.739 −1.20 −1.19 −1.19 −1.4(4) −1.20
15 440 2.828 −2.95 −2.92 −2.92 −2.6(6) −2.95
16 433 2.916 −0.95 −0.95 −0.95 −0.8(6) −0.95

530 −0.19 −0.19 −0.19 −0.2(4) −0.19
17 442 3.000 −1.00 −0.99 −0.99 −1.0(6) −1.00

600 1.11 1.11 1.11 0.6(10) 1.11
18 532 3.082 1.84 1.85 1.85 1.6(4) 1.84

611 1.26 1.26 1.26 1.0(6) 1.26
19 620 3.162 −0.42 −0.41 −0.41 −0.6(8) −0.42
20 541 3.240 −0.03 −0.03 −0.03 −0.2(4) −0.03
21 622 3.317 −0.02 −0.02 −0.02 −0.2(6) −0.02
22 631 3.391 −0.17 −0.17 −0.17 −0.4(4) −0.17
23 444 3.464 −0.14 −0.13 −0.13 0.0(10) −0.14
24 550 3.536 −2.46 −2.44 −2.44 −2.2(6) −2.46

543 0.42 0.42 0.42 0.2(4) 0.42
710 0.88 0.88 0.88 0.88

25 640 3.606 −0.03 −0.03 −0.03 −0.03
26 633 3.674 0.74 0.74 0.74 0.74

255 0.06 0.06 0.06 0.06
721 0.25 0.25 0.25 0.25

27 642 3.742 0.34 0.34 0.34 0.34
28 730 3.808 −0.08 −0.08 −0.08 −0.08
29 732 3.937 −0.13 −0.13 −0.13 −0.13

651 −0.23 −0.23 −0.23 −0.23
30 800 4.000 0.22 0.22 0.22 0.22

a The simulation data of Schweika and Haubold from [27].
b The cluster-variation method data of Finel from [12].

of the number of varied parameters in the considered case. Due to the denoted closeness of
the values of the mixing potential calculated within the iteration and variational methods,
only the data corresponding to the iteration method are presented in figures 5 and 6.
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The closeness (see figures 5(b) and 6(b)) of the corresponding ‘experimental’ values of
SRO parameters (which are the initial data both for the iteration and variational methods)
and the values obtained in the framework of the ring approximation by the use of the general
formula (3.1) on substitution of the mixing potential values obtained within the iteration
method testifies that, on solving the inverse problem even in the framework of the simple
iteration method, we nearly achieve the accuracy of the ring approximation.

Accepting the results of the inverse Monte Carlo method as a standard, on the basis of
the data presented in tables 1, 2 and figures 5(a), 6(a), one may conclude that the results
of the iteration and variational methods are of a high numerical accuracy. Moreover, the
numerical accuracies of these two methods are highest from those of all methods given in
tables 1, 2.

From figure 6(a) and table 2 it follows that, despite the closeness of the values of the
mixing potential calculated within the inverse Monte Carlo and iteration methods for the first
24 coordination shells (see table 1), the corresponding Fourier transforms are found to have
a noticeable difference in the vicinity of the centre of the first Brillouin zone (i.e.0 point).
The denoted difference is essentially decreased (see figure 6(a) and table 2) by putting the
values of the mixing potential calculated within the iteration method for all coordination
shells beginning with 25th one equal to zero (in analogy with the results of the inverse
Monte Carlo simulations). The difference still remaining after such a procedure may be
explained by the wide confidence intervals of the results of the inverse Monte Carlo method
and/or by an effect of the boundary conditions on these results due to the insufficiently large
size of simulation sample [28].

Table 2. The same as in table 1, but for the values of the Fourier transform of the mixing
potential in the high-symmetry points [37] within the first Brillouin zone. The designation
‘VM(24 shells)’ corresponds to the accounting of the values of the mixing potential calculated
in the framework of the variational method only for 24 coordination shells in a calculation of
the Fourier transform.

0 X L W

SM 0.237 −0.136 0.301−0.309
ITM 0.353 −0.142 0.284−0.329
VM 0.346 −0.146 0.289−0.330
VM (24 shells) 0.291−0.143 0.279−0.324
IMC 0.212 −0.134 0.271−0.328
TMG 0.367 −0.153 0.281−0.335
CVM 0.590 −0.178 0.254−0.328

7. Conclusions

In the present paper, in the framework of the high-accuracy ring approximation elaborated
by the authors [14–17] in the context of the modified thermodynamic perturbation theory as
applied to the lattice gas model, two methods are developed for calculation of the atomic
interaction parameters in binary disordered alloys with Bravais crystal lattices on the basis
of the information about atomic short-range order. One of them is the iteration method
(section 4) resulting in explicit analytical relationships; the other one is the variational
method (section 5).

The iteration method is simpler in application than the variational one. It was
demonstrated (sections 4–6) that the iteration method has wide temperature–concentration
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intervals of usability. This method may lead to essential error in calculations only in
the case of alloy with short-range atomic interactions and/or with a small concentration of
impurity, as well as in the case of an alloy whose temperature is close to the phase transition
temperature. The variational method is comparatively more complicated in realization
but permits us to achieve a high numerical accuracy of results in wider temperature–
concentration intervals than the iteration one. However, a high convergence of the
variational method with an increase of the number of variable parameters ensures the relative
simplicity of calculations within this method as well. The numerical accuracies of the results
of both methods are easy to control.

The important advantage of both iteration and variational methods is the use of the
Fourier components of SRO parameters as initial data for calculations. Thus, the most
complete experimental information on SRO in alloys may be taken into account, being
especially important in the case of alloys with long-range atomic interactions and/or of
alloys whose temperature is close to the phase transition temperature (due to corresponding
increase of the effective radius of interatomic correlations). It should be noted that, for
example, in the framework of the much used inverse Monte Carlo method, SRO in alloy can
be described only by means of the values of SRO parameters for a number of coordination
shells limited by an increase of the computational effort.

The other important advantage of both elaborated methods is the ability to calculate
the interatomic interaction parameter for anarbitrary given coordination shell as well
as the Fourier transform of the interatomic potentials. The information concerning the
denoted Fourier transform may be useful, for example, for the estimation of the long-range
contribution to atomic interactions in alloy caused by the relaxation of the elastic distortion
fields induced by solute atoms [5, 25, 29–36]. Note that the much used inverse Monte Carlo
and cluster variation methods allow us to calculate the values of the atomic interaction
parameters only in real space, and the number of these parameters is significantly limited
by an increase of the computational effort.
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